Метод разбиения задачи на подзадачи
Этот метод состоит в том, что сложную нестандартную задачу разбивают на несколько более простых подзадач, по возможности стандартных или ранее решенных, при последовательном решении которых будет решена и исходная сложная задача.
Метод разбиения задачи на подзадачи имеет три разновидности.
Разбиение условий задачи на части.
Разбиение требования задачи на части.
Разбиение области задачи на части.
1)Разбиение условий задачи на части.
Задача 3. Площадь треугольника АВС равна 30 см
. На стороне АС взята точка D такая, что AD : DC = 2 : 3. Длина перпендикуляра DE на BC равна 9 см. Найти BC.
Решение. Построим модель данной задачи.
Дано: 1) ∆ABC; S∆ABC = 30 см
.
D
АС и AD : DC = 2 : 3.
2) DE ^ BC, E 0BC, DE = 9 см.
Найти: ВС.
Внимательно проанализировав условия задачи, нетрудно заметить, что данную нам задачу можно с точностью разделить на две другие, более простые задачи. Переформулировать задачу в две другие возможно так:
Найти площадь треугольника BDC, если сторону AC ∆ABC точка D делит в отношении AD : DC = 2 : 3 и S∆ABC = 30 см².
Найти сторону BC треугольника BDC, зная его площадь и длину высотыDE.
Решаем первую задачу.
Проведем отрезок BD в ∆ABC. Треугольники
ABD и BDC имеют общую высоту BF, следовательно,В
площади данных треугольников относятся как
длины соответствующих оснований, то есть:Е
S∆ABD : S∆BDС = 2 : 3 ⇒ S∆BDС = (⅗)S∆ABC.
А значит, S∆BDС = (⅗)∙30 = 18 см
. А С
![]()
Решаем вторую задачу.FD
Для вычисления площади треугольника имеем формулу – половина произведения основания на высоту, поэтому S∆BDС = (½)BC∙DE, то есть, 18 = (½)BC∙9, откуда BC = 4см.
2)Разбиение требования задачи на части.
Задача 4. При каких значениях а корни уравнения
х
+ х + а = 0 больше а ?
Решение. Требование этой задачи очень сложное. Чтобы сделать суть данной задачи наглядной, разобьем это требование на более простые условия.
Во-первых, чтобы корни данного квадратного уравнения были больше а, они должны вообще существовать на множестве действительных чисел, а для этого дискриминант D должен быть неотрицательным.
Поскольку коэффициент старшего члена квадратного уравнения равен единице, то ветви данной параболы будут направлены вверх. Тогда при любом значении а значение функции, заданной данным квадратным уравнением, в точке а всегда будет положительно. Это второе условие.
Последнее условие, которое можно извлечь из иx иллюстрации к данной задаче, - абсцисса вершины параболы, всегда строго больше значения а.
Таким образом наша задача разделилась на систему более простых задач:
⇒
⇒
;
Статьи о педагогике:
Морфологические категории прилагательного
Прилагательному как части речи свойственны морфологические категории рода, числа и падежа . Все эти категории у прилагательного – словоизменительные и выявляются синтаксически; морфологические значения прилагательных повторяют морфологические значения существительных, с которыми они согласуются. Ка ...
Содержание внеклассной работы по русскому языку
Одним из нейтральных вопросов организации внеклассной работы по русскому языку является определение ее содержания. В соответствии с принципом связи внеклассной работы с уроками русского языка оно соотносится с содержанием языкового и речевого материала, изучаемого по программе. Наряду с этим на вне ...
Методика воспитания собственно-силовых способностей
При необходимости обеспечить высокую степень развития собственно-силовых способностей спортсмена используют ряд методических подходов. Обобщая, их можно свести к двум методическим направлениям, которые сочетаются в различных соотношениях в зависимости от особенностей спортивной специализации. Перво ...
Меню
- Главная
- Воспитание трудолюбия дошкольников
- История развития педагогики
- Физическая культура в младших классах
- Детская и юношеская субкультуры
- Развитие женского образования в России
- Психология и педагогика
- Перспективы образования

