Классификация задач
Переопределенные задачи - задачи, имеющие условие, которые не использующие при их решении выбранным способам. Такие условия называют лишними. Следует иметь в виду, что при решении задачи другим способом лишними могут оказаться уже другие условия. Если в переопределенной задаче лишние условия не противоречат остальным условиям, то она имеет решение.
Пример:В одной печи можно обжечь 39 ООО кирпичей за шесть дней, а в другой столько же кирпичей можно обжечь за пять дней. За сколько дней можно обжечь 143 ООО кирпичей, используя обе печи одновременно, если в первой печи за один день обжигают на 1300 кирпичей меньше, чем во второй.
В начальном курсе математики неопределенные задачи называют с недостающими данными, а переопределенные - задачами с избыточными данными.
Задачи можно разделить на стандартные и нестандартные. Нестандартная задача - это задача, решение которой не является для решающего известной целью известных действий. Для ее решения учащийся сам должен изобрести способ решения.
В каждой нестандартной задаче, как в клубке ниток, можно обнаружить ту ниточку, потянув за которую, можно распутать весь клубок. Такой ниточкой является основная идея решения, один из методов решения, который принято называть эвристиками. Эвристиками называются и отдельные методы решения задач, и учение об общих методах поиска решения задач.
Положив в основание классификации фабулу задачи, чаще всего выделяют такие группы задач: «на движение», «на работу», «на смеси и сплавы», «на смешение и концентрацию», «на проценты», «на части», «на время», «на покупку и продажу» и т. п. классифицировать задачи, исходя из фабулы условия, очень сложно, так как тематика условий задач бывает порой очень разнообразной.
Наиболее часто используемой эвристикой является метод восходящего анализа - решение задачи с конца, от требования - к условию.
Множество задач, в которых имеется одинаковая зависимость между величинами, входящими в эти задачи, при возможном различии их числовых данных и фабул образуют определенный вид задач. Задачи одного вида имеют одну и ту же алгебраическую модель. Положив в основание классификации способы решения задач, можно выделить такие группы задач:
1. задачи на тройное правило;
2. задачи на нахождение неизвестных по результатам действий;
3. задачи на пропорциональное деление;
4. задачи на исключение одного из неизвестных;
5. задачи на среднее арифметическое;
6. задачи на проценты и части;
задачи, решаемые с конца, или «обратным ходом».
При решении задач различными методами используют, как правило, «свою» классификацию задач. Так, при алгебраическом методе решения чаще всего в качестве основания классификации берут фабулу задачи, а при решении арифметическим методом задачи классифицируют по способам их решения. Однако следует отметить, что такое разбиение задач на группы, строго говоря, не является классификацией, так как в этих случаях, с одной стороны, появляются задачи, которые не могут быть отнесены ни к одной из образовавшихся групп, с другой стороны, существуют задачи, которые могут быть отнесены к нескольким указанным группам.
Вместе с тем с точки зрения учебных целей эти и подобные им «классификации» задач удобны. Они дают возможность выделить наиболее типичные виды задач и усвоить стандартные способы их решения.
Разбор задачи можно сделать двумя приемами.
1. Первый прием называется синтетическим. Он состоит в следующем. Из условия задачи учащиеся выбирают одну пару числовых данных (иногда больше), к ним подбирается вопрос, т. е. составляется простая задача. Число, полученное при решении этой простой задачи, вместе с одним из данных в условии составной задачи или другая пара чисел из условия задачи берутся для составления второй простой задачи и т. д. в последней простой задаче ставится вопрос составной задачи. Ответ на него явится ответом задачи.
2. Второй прием разбора задач называется аналитическим. Разбор начинается с главного вопроса задачи, к нему подбираются данные из условия задачи, если в условии нет данных для решения этого вопроса, ставятся новые вопросы для их определения. Так поступают и дальше до тех пор, пока дойдут до вопроса, для которого есть данные в условии.
Анализ и синтез связаны между собой. Подбирая к числовым данным вопрос (синтез), мы выбираем те данные, которые должны привести е решению задачи (анализ); поставив вопрос задачи (анализ), мы берем те данные, которые есть в условии задачи (синтез).
Статьи о педагогике:
Применение фольклора в патриотическом воспитании старших дошкольников
«Воспитание патриотических чувств у детей дошкольного возраста – одна из задач нравственного воспитания, которая включает в себя воспитание любви к ближним и родному дому, к детскому саду и родному городу, к своей стране. Эту работу невозможно полноценно реализовать, не привлекая в неё устное народ ...
Развитие гибкости
Гибкость — это способность человека выполнять движения с большой амплитудой. Это качество определяется развитием подвижности в суставах, Термином «гибкость» целесообразнее пользоваться в тех случаях, когда речь идет о суммарной подвижности в суставах всего тела. Применительно же к отдельным сустава ...
Особенности обучения дошкольников лексике английского языка
Вопрос о том, нужно и можно ли обучать детей 4 - 6 лет иностранным языкам, давно уже на практике решен положительно. Известно, что изучение иностранного языка развивает разные стороны личности: память, внимание, прилежание, языковую догадку, эрудицию, дисциплину; делает ребенка более активным; приу ...
Меню
- Главная
- Воспитание трудолюбия дошкольников
- История развития педагогики
- Физическая культура в младших классах
- Детская и юношеская субкультуры
- Развитие женского образования в России
- Психология и педагогика
- Перспективы образования