Роль задач с практическим применением в развитии предметной мотивации
При решении можно использовать следующий алгоритм:
1. Сколько бассейнов заполняют все источники за 1 день:
2. Сколько времени потребуется, чтобы заполнить 1 бассейн:
На основании этой задачи можно составить различные однотипные задачи, используя следующую общую задачу:
Задача 2
Из под земли бьют источников. Первый заполняет бассейн за m1 дней, второй - за m2 дней, ., п-й - за mn дней. Сколько времени потребуется всем источникам вместе, чтобы заполнить бассейн?
Частные формулировки общей задачи можно изменить и по содержанию. Для этого вместо «источников» можно взять бригаду, автобусный парк и т.д. К такому типу относится следующая задача.
Задача 3
Со склада различным потребителям распределяется определённое количество товара. Имеется 5 автопарков. Первый развозит весь товар за 2 дня, второй - за 1 день, третий - за 3 дня, четвёртый - за 4 дня и пятый - за 6 дней. Сколько часов потребуется всем автопаркам, чтобы вместе развести весь товар, если каждый автопарк ежедневно работает 9 часов?
Решение: 1. Сколько товара развозят все автопарки за 1 день:
2. Сколько дней потребуется всем автопаркам, чтобы вместе развезти весь товар:
(дней).
3. Сколько часов потребуется всем автопаркам, чтобы вместе развезти весь товар:
(часа).
Ответ: 4 часа.
Решение задач этого типа убеждает учащихся в единстве математических методов, в единстве связей практики и абстрагирования.
Для учащихся, увлечённых химией, физикой и биологией, важны задачи со следующим содержанием.
Задача 4
В 100 г 20%-ного раствора соли добавили 300 г её 10%-ного раствора. Определите процентную концентрацию раствора.
Решение:
Графический метод:
Рис. 1
Ответ: 12,5%
Метод последовательных вычислений:
Сколько растворенного вещества содержится:
а) в 100 г 20%-ного раствора? [100•0,2 = 20(г)];
б) в 300 г 10%-ного раствора? [300•0,1 = 30(г)].
Сколько вещества содержится в образовавшемся растворе?
20 г + 30 г = 50 г.
Чему равна масса образовавшегося раствора?
100 г + 300 г = 400 г.
Какова процентная концентрация полученного раствора?
(50/400)100 = 12,5(%).
Ответ: 12,5%
Алгебраический метод:
Пусть х - процентная концентрация полученного раствора. В первом растворе содержится 0,2•100 (г) соли, во втором - 0,1•300 (г), а в полученном растворе - х• (100 + 300) (г) соли. Составим уравнение: 0,2•100 + 0,1•300 = х• (100 + 300). Получаем х = 0,125 (12,5%).
Ответ: 12,5%
Задача 5
Смешали 10%-ный и 25%-ный растворы соли и получили 3 кг 20%-ного раствора. Какое количество каждого раствора в килограммах было использовано?
Решение:
Алгебраический метод:
а) C помощью уравнения:
Пусть х (кг) - масса 1-го раствора, тогда (кг) - масса 2-го раствора.
Получаем:
- 0,1•х (кг) соли содержится в 1-ом растворе;
- 0,25• (3-х) (кг) соли содержится в 2-ом растворе;
- 0,2•3 (кг) соли содержится в смеси.
Учитывая, что масса соли в 1-ом и 2-ом растворах равна массе соли в смеси, составим уравнение: 0,1х+0,25•(3-х)=0,2•3 или х=1. Итак:
-х=1 (кг) - масса 1-го раствора;
-3–х = 3–1=2 (кг) - масса 2-го раствора.
Ответ: 1 кг, 2 кг.
Статьи о педагогике:
Колония-мануфактура
Здесь я опишу трудовые успехи коммуны им. Дзержинского в 1930 – 1931 гг. Это был период её перехода на полукустарное производство. По существу, эпоха простеньких мастерских и примитивного сельского хозяйства уже закончилась, однако, эра настоящей индустриализации колонии ещё не наступила. В начале ...
Структура и подготовка лекции
В структуре лекции выделяют три части: введение, основное содержание и заключение. Во введении устанавливается связь темы с пройденным материалом, определяются цели, задачи лекции, формулируется план лекции. Список информационных источников можно предложить во введении, а можно представить в конце ...
Методика изучения аксиом стереометрии
Построение системы аксиом стереометрии происходит по двум направлениям: 1) переформулирование аксиом планиметрии для пространства; 2) добавление новых “специфических” аксиом стереометрии. Первое из них осуществляется через принятие аксиомы: “В каждой плоскости пространства справедливы (выполнимы) в ...
Меню
- Главная
- Воспитание трудолюбия дошкольников
- История развития педагогики
- Физическая культура в младших классах
- Детская и юношеская субкультуры
- Развитие женского образования в России
- Психология и педагогика
- Перспективы образования