Система эвристических методов Г.Д. Балка

Страница 3

Решение. Возможно рассмотреть такие частные случаи нарастающей сложности:

n = 0, m = 1;

n = 0, m = 2;

n = 0, m – любое;

n = 1, m – любое;

n = 2, m – любое ;

n – любое, m – любое (m>n).

Первые три случая тривиальны, поскольку первый игрок может вынуть сразу все шары. В следующих трех случаях первый игрок очевидно должен каждым своим ходом уравнивать количество шаров в соответствии с другим ящиком.

Часто поиск решения предложенной задачи значительно упрощается, если предварительно решить такую вспомогательную задачу, которая имеет сходное условие с данной задачей, но в которой условие или некоторые данные получаются из условия или из данных исходной задачи путем предельного перехода. Например, некоторые из фигур, о которых говорится в исходной задаче, заменяются их предельными положениями. Иначе:

если в исходной задаче идет речь о секущей к окружности, то вместо нее во вспомогательной задаче следует рассмотреть касательную (предельное положение секущей, когда расстояние ее от центра стремится к радиусу);

если в условии задачи говорится о четырехугольнике, то во вспомогательной задаче можно рассматривать треугольник (предельное положение четырехугольника, когда длина одной из его сторон стремится к нулю).

Важно учитывать то, что для одной и той же задачи можно подобрать различные предельные случаи.

Кроме того, рассмотрение предельного случая полезно также при выяснении правдоподобия того или иного готового результата (ответа к задаче, данной формулы), а также для построения опровержения.

Для иллюстрации метода подходит следующая задача.

Задача 14. В четырехугольнике ABCD две стороны AD и BC не параллельны. Что больше: полусумма этих сторон или отрезок MN, соединяющий середины двух других сторон четырехугольника?

Поиск решения. Важно представить, что будет получено в предельном случае, когда В одна из сторон четырехугольника стянется в одну точку. В данном случае стягивать в точку МN можно либо BC (или AD), либо AB (или CD).

Рассмотрим первый случай, тогда пусть BC стянется в точку B. В предельном положении А D точка N совпадет с серединой К отрезка BD, и MN станет средней линией MK

Bтреугольника ABD, в предельном случае получаем такую задачу: что больше, половина стороны AD треугольника ABD или отрезок M, соединяющий MK (N)середины двух других сторон?

Ответ прост: MK = AD.

Поставим цель – свести к полученному предельному

ADслучаю решение задачи в общем случае.

Решение. Пусть К – середина диагонали BD четырехугольника ABCD. Из ABD имеем MK = AD и MK || AD. Также из BCD имеем KN = BC и KN || BC.

Страницы: 1 2 3 4 5


Статьи о педагогике:

Познавательное развитие детей седьмого года как необходимое условие подготовки к школе
Подготовительную в школе группу при МОУ СОШ №13 посещает 17 детей: 9 мальчиков и 8 девочек. 50% детей воспитывается в полных семьях с двумя или одним ребёнком. 50% - неполные семьи. Социальное положение всех семей благополучное. Дети моей группы добрые, отзывчивые, свободно вступают в общение со св ...

Влияние изометрических и динамических напряжений на функциональное со стояние организма юных волейболистов
Для изучения ритма сердечной деятельности подростков использовался метод непрерывной регистрации частоты пульса непосредственно во время мышечной работы (методика описана во второй главе). Известно, что частота пульса является весьма лабильным показателем функционального состояния сердечно-сосудист ...

Задачи эффективного учителя в учебном процессе
учитель иисус информация преподавание Именно учителя являются самой важной частью любой образовательной программы, а не оборудование, учебный план и т.д Эффективные учителя отличаются от своих менее эффективных коллег тем, что они делают в классе и вот некоторые из этих вещей: а. Активное обучение ...

Меню

Copyright © 2025 - All Rights Reserved - www.mainedu.ru