Система эвристических методов Г.Д. Балка

Страница 3

Решение. Возможно рассмотреть такие частные случаи нарастающей сложности:

n = 0, m = 1;

n = 0, m = 2;

n = 0, m – любое;

n = 1, m – любое;

n = 2, m – любое ;

n – любое, m – любое (m>n).

Первые три случая тривиальны, поскольку первый игрок может вынуть сразу все шары. В следующих трех случаях первый игрок очевидно должен каждым своим ходом уравнивать количество шаров в соответствии с другим ящиком.

Часто поиск решения предложенной задачи значительно упрощается, если предварительно решить такую вспомогательную задачу, которая имеет сходное условие с данной задачей, но в которой условие или некоторые данные получаются из условия или из данных исходной задачи путем предельного перехода. Например, некоторые из фигур, о которых говорится в исходной задаче, заменяются их предельными положениями. Иначе:

если в исходной задаче идет речь о секущей к окружности, то вместо нее во вспомогательной задаче следует рассмотреть касательную (предельное положение секущей, когда расстояние ее от центра стремится к радиусу);

если в условии задачи говорится о четырехугольнике, то во вспомогательной задаче можно рассматривать треугольник (предельное положение четырехугольника, когда длина одной из его сторон стремится к нулю).

Важно учитывать то, что для одной и той же задачи можно подобрать различные предельные случаи.

Кроме того, рассмотрение предельного случая полезно также при выяснении правдоподобия того или иного готового результата (ответа к задаче, данной формулы), а также для построения опровержения.

Для иллюстрации метода подходит следующая задача.

Задача 14. В четырехугольнике ABCD две стороны AD и BC не параллельны. Что больше: полусумма этих сторон или отрезок MN, соединяющий середины двух других сторон четырехугольника?

Поиск решения. Важно представить, что будет получено в предельном случае, когда В одна из сторон четырехугольника стянется в одну точку. В данном случае стягивать в точку МN можно либо BC (или AD), либо AB (или CD).

Рассмотрим первый случай, тогда пусть BC стянется в точку B. В предельном положении А D точка N совпадет с серединой К отрезка BD, и MN станет средней линией MK

Bтреугольника ABD, в предельном случае получаем такую задачу: что больше, половина стороны AD треугольника ABD или отрезок M, соединяющий MK (N)середины двух других сторон?

Ответ прост: MK = AD.

Поставим цель – свести к полученному предельному

ADслучаю решение задачи в общем случае.

Решение. Пусть К – середина диагонали BD четырехугольника ABCD. Из ABD имеем MK = AD и MK || AD. Также из BCD имеем KN = BC и KN || BC.

Страницы: 1 2 3 4 5


Статьи о педагогике:

Педагогическая система Жан-Жака Руссо
Жан-Жак Руссо исходил из идеи природного совершенства детей. По его мнению, воспитание не долж­но мешать развитию этого совершенства, а потому следу­ет предоставлять детям полную свободу, приспосабливаясь к их склонностям и интересам. Эти идеи Руссо положи­ли начало разработке теории «свободного во ...

Критерии оценки уровня развития творческого потенциала подростков
Для того чтобы процесс развития творческого потенциала подростков осуществлялся успешно, необходимы знания об уровнях его развития у учащихся, поскольку выбор видов творчества должен зависеть от уровня, на котором находится учащийся. С этой целью используется диагностика, осуществляемая с помощью и ...

Технология формирования социальной активности студента в воспитательной системе вуза
В современном образовательном пространстве возникла необходимость в подготовке профессионально компетентных, социально активных и конкурентоспособных специалистов, готовых обеспечить обществу устойчивое, безопасное и успешное развитие, так как общество ставит перед человеком все более усложняющиеся ...

Меню

Copyright © 2025 - All Rights Reserved - www.mainedu.ru